
QUANTITATIVE MODELS PLAY A CRUCIAL role in evolutionary biology, especially
in population genetics. Mathematical analysis has shown how different evo-
lutionary processes interact, and statistical methods have made it possible to

interpret observations and experiments. The availability of computing power and the
flood of genomic data have made quantitative methods even more prominent in re-
cent years.

Although we largely avoid explicit mathematics in Evolution,
mathematical arguments lie behind much of what is discussed. In
this chapter, the basic mathematical methods that are used in evo-
lutionary biology are outlined. The chapters in the book can be
understood in a qualitative way without this chapter, and that may
be appropriate for an introductory course. Similarly, many of the
problems (online) associated with Chapters 13–23 involve only el-
ementary algebra and do not require the mathematical methods
explained in this chapter. However, reading through this chapter
and working through the problems that depend on it will give you
a much stronger grasp of evolutionary modeling and will allow
you to fully engage with the most recent research in the field.

Most students will have had some basic courses in statistics,
focusing on methods for testing alternative hypotheses and mak-
ing estimates from the data. Although we do emphasize the evi-
dence that is the basis for our understanding of evolutionary bi-
ology, we do not do more than touch on methods for statistical
inference. However, our understanding of the evolutionary
processes does fundamentally rest on knowledge of probability: Indeed, much of mod-
ern probability theory has been motivated by evolutionary problems (see the Random
Processes section of this chapter). This is true both when we follow the proportions
of different genotypes within a population and, more obviously, when we follow ran-
dom evolutionary processes (Chapter 15) in explicitly probabilistic models. (The im-
portance of probability will become apparent when you work through the problems
[online].) In this chapter, we discuss the definitions and meaning of probability and
summarize the basic theory of probability.

This chapter begins with an explanation of how mathematical theory can be used
to model reproducing populations. Next, we discuss how deterministic processes (i.e.,
those with no random element) can be modeled by following genotype frequencies.
Then, random processes are examined, summarizing important probability distribu-
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tions and describing two fundamentally random phenomena, branching processes
and random walks. The chapter ends with an outline of the diffusion approximation,
which has played a key role in the development of the neutral theory of molecular
evolution (p. 59).

Throughout this chapter, only straightforward algebra and some basic calculus are
used. The emphasis is on graphical techniques rather than manipulation of algebraic
symbols. Thus, many of the problems (online) can be worked through using a pencil
and graph paper. In general, it is more important to understand the qualitative be-
havior of a model than to get exact predictions: Indeed, models that are too complex
may be as hard to understand as the phenomenon being studied (p. 382). This a par-
ticular problem with computer simulations: These can show complex and intriguing
behavior, but, all too often, this behavior is left unexplained. This chapter should give
you an appreciation of the key role that simple mathematical models play in evolu-
tionary biology.

MATHEMATICAL THEORY CAN BE USED IN TWO DISTINCT WAYS

To aid in understanding evolutionary biology, mathematical techniques can be used
in two ways (Fig. 28.1). The first is to work out the consequences of the various evo-
lutionary processes and to identify the key parameters that underlie evolutionary
processes. For example, how do complex traits, which are influenced by many genes,
evolve (Chapter 14)? How do random drift, gene flow, and selection change popula-
tions (Chapters 15–17)? How do these evolutionary forces interact with each other and
with other processes (Chapter 18)? As an aid in answering questions like these, the
main role of mathematical theory is to guide our understanding and to develop our
intuition rather than to make detailed quantitative predictions. Often, verbal argu-
ments can be clarified using simple “toy models,” which show whether an apparently
plausible effect can operate, at least in principle. Much of our progress in under-
standing sexual selection (Chapter 20) and the evolution of genetic systems (Chapter
23) has come from this interplay between verbal argument and mathematical theory.

Time
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FIGURE 28.1. Theory is used in two ways in evolutionary biology. (A) The evolution of a popula-
tion can be traced forward in time, giving predictions about the effects of the various evolution-
ary processes. (B) We can focus on a sample of individuals and trace its ancestry backward in time.
This allows us to make inferences about the past processes that shaped the sampled genes. Genes
are shown by dots, with color indicating allelic state (red or black). There is a single mutation
(black→red) in the ancestry of the five sampled genes.
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Thus, although only verbal arguments are presented in other chapters, these cor-
respond to definite mathematical models.

Mathematical techniques can also identify key parameters underlying evolu-
tionary processes. For example, for a wide range of models, the number of indi-
viduals that migrate in each generation determines the interaction between ran-
dom drift and migration. This number of migrants can be written as Nm, where
N is the number in the population and m is the proportion of migrants (see Box
16.2). Similarly, the parameter Ns (which is, roughly, the number of selective
deaths per generation) determines the relative rates of random drift and selection.
Sometimes, mathematical techniques can identify a key quantity that determines
the outcome of a complex evolutionary process. For example, the total rate of pro-
duction of deleterious mutations determines the loss of fitness due to mutation (p.
552), and the inherited variance in fitness determines the overall rate of adapta-
tion (pp. 462 and 547–549). Once these key quantities have been identified, ex-
periments can then be designed that focus on measuring them, and other compli-
cations (e.g., numbers of genes and their individual effects) can be ignored.

Mathematical theory is now being used in a second, and quite distinct, way. The
deluge of genetic data that has been generated over the past few decades demands
quantitative analysis. Thus, recent theory has focused on how to make inferences
about evolving populations, based on samples taken from them. Some questions are
quite specific: for example, using forensic samples to find the likely ethnic origin of
a criminal, finding the age of the mutation responsible for an inherited disease, or
mapping past population movements (pp. 434, 743–748, and 768–773). Others are
broader: such as finding what fraction of the genome has a function (pp. 542–547)
or measuring rates of recombination along chromosomes (Fig. 15.19).

Answering many of these questions requires tracing the ancestry of genes back
through time (Fig. 28.1b) rather than modeling the evolution of whole populations
forward in time (Fig. 28.1a). Thus, making inferences from genetic data requires
new kinds of population genetics and new statistical techniques. These have been
especially important in the development of the neutral theory (p. 59) and, more
recently, in analyzing DNA sequence data (e.g., pp. 435–437 and 760–765).

DETERMINISTIC PROCESSES

A Population Is Described by the Proportions of the
Genotypes It Contains

It is populations that evolve and it is populations that we must model. Populations
are collections of entities that can be of several alternative types; thus, it is necessary
to follow the proportions of these different types. For example, when dealing with a
collection of diploid individuals, and focusing on variation at a single gene with two
alleles, the proportions of the three possible diploid genotypes QQ, PQ, and PP must
be followed. If, instead, the focus is on the collection of genes, then the frequencies
of the two types of gene (labeled, for example, Q and P) are followed.

Before going on, two points need to be made concerning terminology. First,
different kinds of gene are referred to as alleles. Thus, the proportions of alleles Q
and P can be written as q and p, which are known as allele frequencies, and, clearly,
q + p = 1. (Genetic terminology is discussed in more detail in Box 13.1.) Second,
perhaps the most important step in building a model is to decide which variables
describe the population under study. When a population is modeled, these vari-
ables are either the allele frequencies or the genotype frequencies of the different
types or genealogies that describe the ancestry of samples of genes. Variables must
be distinguished from parameters, which are quantities that determine how the
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population will evolve, such as selection coefficients, recombination rates, and muta-
tion rates. As a population evolves, the parameters stay fixed, but the variables change.

Physics and chemistry also deal with populations, but these populations are atoms
and molecules instead of genes and individuals. However, atoms are conserved intact,
and although molecules may be transformed by chemical reactions, their constituent
atoms are not affected (Fig. 28.2A). In biology, the situation is fundamentally differ-
ent: individuals, and the genes they carry, die and reproduce. This leads to more com-
plex—but also more interesting—phenomena.

In the simplest case, offspring are identical to their parents (Fig. 28.2B). In eco-
logical models, the assumption is that females of each species produce daughters of
the same species, and so the numbers of each species in the whole ecosystem are fol-
lowed. (Often, males have a negligible effect on population size and so can be ignored.)
The same applies to asexual populations (e.g., bacteria), where offspring are geneti-
cally identical to their parents, or where the different alleles of a single gene are fol-
lowed (Fig. 28.2B). Even in this simplest case, however, the reproduction of each in-
dividual is affected by the other individuals in the population, leading to a rich variety
of phenomena (pp. 470–472 and 505–508). Different species or different asexual geno-
types compete with each other, and the different alleles at a single genetic locus com-
bine to form different diploid genotypes.

Sexual reproduction is harder to model, because two individuals come together to
produce each offspring, which differs from either parent (Fig. 28.2C). We can no longer
follow individual genes but must instead keep track of the proportions of all the differ-
ent combinations of alleles that each individual carries. Although each gene stays intact
per se, the set of genes that it is associated with changes from generation to generation.

Whether reproduction is sexual or asexual, a population can be modeled by keeping
track of the proportion of each type of offspring. This is much harder for a sexual pop-
ulation, because so many different types can be produced by recombination (Fig. 28.3).
However, the basic approach to modeling is the same as when there are just two types.
In this chapter, we will work through the simplest case, that of two alleles of a single
gene. The basic principles generalize to more complicated cases, where a large number
of types must be followed (see Problem 19.15 [online] and Problem 23.7 [online]).

Reproducing Populations Tend to Grow Exponentially

Evolution usually occurs so slowly that it can be treated as occurring continuously
through time, as a continuous change in genotype frequencies or in the distribution
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FIGURE 28.2. (A) Physics deals with populations of atoms that remain intact and do not change
state. (B) Biology deals with populations of genes or individuals that reproduce and die. The sim-
plest case is where offspring are identical to their parents—as with species, asexual organisms, or
genes at a single locus. (C) With sexual reproduction, pairs of individuals reproduce. Genes re-
main intact, but combinations of genes are reshuffled by sex and recombination.



of a quantitative trait. Sometimes, evolution may be truly continuous. For example,
suppose that in each small time interval, organisms have a constant chance of dying
and a constant chance of giving birth, regardless of age. Then, only their numbers
through time, n(t), need to be followed. Their rate of increase—that is, the slope of
the graph of numbers against time—is written as

This is a simple differential equation that gives the rate of change of the popula-
tion size in terms of its current numbers. The solution to this equation can be seen in
qualitative terms from the graph of Figure 28.4, for r = 1. When numbers are small,
the rate of increase is small, but as numbers increase, so does the rate, giving the char-
acteristic pattern of exponential change. This solution is written as

n(t) = n(0) ert or n(0) exp(rt),

where e = 2.71827... . This pattern can also be thought of as an approximation to a
discrete model of geometric growth, in which numbers increase by a factor (1 + r) in
every time unit. After t generations, the population has increased by a factor (1 + r)t,
which tends to exp(rt) for small r. (For example, 1.110 = 2.594, and 1.01100 = 2.705,
approaching e = 2.718... .)

The exponential relationship often needs to be inverted, in order to find the time
taken for the population to grow by some factor (Fig. 28.5). This inverse relationship
is the natural logarithm, defined by log(exp(x)) = x. Thus,

Using this formula, the time it takes for a population to grow by a factor e = 2.718 is
given by rt = log(e) = 1, which is a time t = 1/r. Similarly, it takes a time log(10)/r ~
2.30/r to increase tenfold, and twice that to increase 100-fold (log(100)/r ~ 4.60/r). (In
this book, natural logarithms are always written as log(x). They can be written as
loge(x) or ln(x) to distinguish them from logarithms to the base 10, log10(x), which
were commonly used for arithmetical calculations. Now that electronic calculators are
so widespread, logarithms to the base 10 are rarely seen.)

FIGURE 28.4. The exponential
function ex has a slope equal to
its value. In other words, it sat-
isfies the differential equation
dn/dx = n. This is illustrated in
the graph, which shows slopes
of 1, 2, 4 when ex = 1, 2, 4, re-
spectively. The shaded triangles
illustrate the gradients at points
where ex = 1, 2, 4. Recall that
the slope dn/dx is the ratio be-
tween the vertical and horizon-
tal edges of the triangles.
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FIGURE 28.3. With sexual reproduction, a mating between two types that differ at ten genes can
produce 210 = 1024 different haploid types and 220 = 1,048,576 different diploid genotypes.
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FIGURE 28.5. The inverse of the
exponential function (y = ex) is
the natural logarithm (x =
log(y)).

FIGURE 28.6. Provided that the difference
in fitness between alleles, rP – rQ, stays the
same (as in A), the allele frequency P fol-
lows the standard sigmoid curve over time
(B) and is not affected by changing popula-
tion size, n = nP + nQ (C). (Numbers of al-
leles P and Q, nP and nQ, are shown in red
and blue, respectively.)
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If a population contains two types, Q and P, each with its own characteristic growth
rate rQ and rP, then the numbers of each type will grow exponentially. As explained
in Box 28.1, the proportions change according to

where the selection coefficient s is the difference in growth rates, rP – rQ. (The con-
sequences of this formula were explored in detail in Box 17.1.) Thus, in continuous
time, the appropriate measure of fitness is the growth rate r, and the selection coeffi-
cient is the difference in fitness between genotypes. In any actual population, growth
rates will change over time. If the population is to remain more or less stable, growth
rates must decrease as the population grows and increase as the population shrinks.
However, provided that the growth rates of each genotype change in the same way, the
differences between them stay the same, and so changes in allele frequency are not af-
fected by changes in population size (Fig. 28.6).



Selection in Discrete and Continuous TimeBox 28.1

Whether a population reproduces in discrete generations or continuously through time,
the rate of change in allele frequency is ∅p = spq, where s is the selection coefficient,
which is the difference between the relative fitnesses of the two alleles.

Discrete Time: Imagine a haploid population, with alleles Q, P at frequencies q, p
(where q + p = 1). Each gene of type Q produces WQ copies, and each gene of type P
producesWP. In the next generation, the numbers of each will be in the ratios qWQ:pWP.
Dividing by the total gives the new frequencies:

The change in allele frequency is

This can be written as

Continuous time: Suppose that for types Q, P, their numbers nQ, nP are each growing
exponentially at rates rQ, rP. How does the allele frequency, p = nP/(nQ + nP) change? This
is found by differentiating with respect to t and applying the rules for differentiating prod-
ucts and ratios:
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FIGURE 28.7. A differential equation is a
good approximation to a discrete recursion
when change is gradual. (A) The series of
triangles shows the solution to the recur-
sion pt + 1 = pt + sptqt, for generations 0,
1, 2, ... . The continuous red curve is the
solution to dp/dt = sp(t)q(t). This has the
same slope at time t = 0, when p(0) = p0.
(Compare the slope of the red curve with
the diagonal line, which has slope sp0q0.
However, because the differential equation
allows for a continuous acceleration (i.e.,
an upward curve) as allele frequency in-
creases, it increases slightly faster than the
discrete recursion (black steps). (B) The dis-
crete recursion (black dots) with WP/WQ =
1.1 compared with the continuous solution
(red curve) to dp/dt = spq with s = 0.1; al-
lele frequency is initially 0.01. Agreement
is close at first, but errors build up over
time; nevertheless, the error is never more
than 4%.
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Gradual Evolution Can Be Described by
Differential Equations

The basic differential equation dn/dt = rn has been presented as an exact model of
a homogeneous population that reproduces continuously in time. However, it is also
a close approximation to populations that reproduce in discrete generations, as long
as selection is not too strong. The change in allele frequency from one generation
to the next is ∅p = spq, where the selection coefficient s is again the difference in
relative fitness between the two alleles (Box 28.1). Approximating this discrete
process as a continuous change in allele frequency p(t) can be thought of as draw-
ing a smooth curve though a series of straight-line segments (Fig. 28.7). More com-
plicated situations are described in Chapter 17; for example, populations may con-
tain a mixture of ages, each with different birth and death rates. However, as long
as change is gradual, the population will settle into a pattern of steady growth that
can be modeled by a simple differential equation (Box 17.1). It is almost always more
convenient to work with differential equations than with discrete recursions, and so
most population genetics theory is based on differential equations. Box 28.2 shows
how equations can be integrated to find out how long it takes for selection to change
allele frequency. Problem 17.9 (online) shows how this method can be used for a va-
riety of models.

Describing gradual evolution by differential equations can be extended to more
complicated situations involving several variables, such as following the frequencies of
three or more alleles of one gene or following allele frequencies at multiple genes. In
such cases, a set of coupled differential equations are generated, in which the rate of
change of each variable depends on all the others:



Solving Differential EquationsBox 28.2

Differential equations such as dp/dt = spq can be solved by thinking of time as depend-
ing on allele frequency, t(p), rather than of allele frequency as a function of time, p(t). In
other words, we can ask how long it takes a population to go from one allele frequency
to another. This is written as

Using the fundamental relation between differentiation and integration,

This gives the time taken for the allele frequency to change from p0 to p1. As emphasized
in the main text, this time is inversely proportional to the selection coefficient.

This derivation can be seen graphically with the aid of Figure 28.8, which plots
s(dt/dp) = 1/pq, the rate of increase of time against allele frequency. The area under the
curve is the total time elapsed, T = st. By definition, this equals the integral of 1/pq,
which is plotted in Figure 28.9; the gradient of this graph equals 1/pq. This graph gives
the (scaled) time that has elapsed. Turning this graph around gives the more familiar
graph of allele frequency against time, p(T).
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FIGURE 28.8. Plot of s(dt/dp) = 1/pq, the
rate of time against allele frequency. The
blue area under the curve is the total time
taken to go from p0 to p1.
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where f1, f2 represent some arbitrary relationship between the present state of the pop-
ulation (described by p1, p2, ...) and its rate of change. Even quite simple systems of
this sort can show surprisingly complex behavior, including steady limit cycles or
chaotic fluctuations.

The most important point to take from this section is a qualitative one: The
timescale of evolutionary change is inversely proportional to the selection coefficient
s. In the simplest case, where dp/dt = spq and s is a constant, a new measure of time,
T = st, can be defined. Then,

The allele frequency depends only on T; thus, the same equation applies for any
strength of selection provided that the timescale is adjusted accordingly.

This can also be done in the more general case, where there is a set of equations
with rates all proportional to some coefficient s (dp1/dt = sf1, dp2/dt = sf2, ..., so that
dp1/dT = f1, dp2/dT = f2, ...). Thus, all that matters is the scaled time T. For example,
the pattern of change would look the same if the strength of selection were halved
throughout but would be stretched over a timescale twice as long. Elsewhere in the
book, when processes such as migration, mutation, and recombination are considered,
we see that change occurs over a timescale set by the rates of the processes involved,
and that the pattern itself only depends on the ratios between the rates of the differ-
ent processes.

Populations Tend to Evolve toward Stable Equilibria

It is hardly ever possible to find an exact solution to the differential equations that
arise in evolutionary models. Today, it is straightforward to solve differential equations
using a computer, provided that numerical values for the parameters are chosen. How-
ever, this is insufficient to understand the system fully, because often there will be too
many parameters to explore the full range of behaviors. In any case, the goal usually
is to do more than just make numerical predictions. We want to understand which
processes dominate the outcome: Which terms matter? How do they interact? What is
their biological significance? In this section, we will see how we set about under-
standing models in this way.

The first step is to identify which parameter combinations matter. For example, we
have just seen that, in models of selection, only the scaled time T = st matters, not s
or t separately. Often, this can drastically reduce the number of parameters that need
to be explored. The next step is to identify equilibria—points where the population
will remain—and find whether they are locally stable. In other words, if the popula-
tion is perturbed slightly away from an equilibrium, will it move farther away or con-
verge back to the equilibrium? There may be several stable equilibria, however, so
where the population ends up depends on where it starts. In that case, each stable equi-
librium is said to have a domain of attraction (Fig. 28.10A). Conversely, there may be
no stable equilibrium, so that the population will never be at rest (Fig. 28.10B). How-
ever, identifying the equilibria and their stability takes us a long way toward under-
standing the full dynamics of the population.

In population genetics, in the absence of mutation or immigration, no new alleles
can be introduced. In that case, there will always be equilibria at which just one of the
possible alleles makes up the entire population. At such an equilibrium, the allele is
said to be fixed in the population. The crucial question, then, is whether the popula-
tion is stable toward invasion from new alleles. This depends on whether the new al-
lele tends to increase from a low frequency, which it will do if it has higher fitness than
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FIGURE 28.10. (A) If there is more than one stable equilibrium, then where the population ends up
depends on its initial state. The diagram shows two stable equilibria (purple dots) separated by an
unstable equilibrium (red dot). The dotted line separates the domains of attraction of the two stable
equilibria. (B) There may be no stable equilibria, in which the population will change continually.
This diagram shows a stable limit cycle (blue), which encloses an unstable equilibrium (red dot).
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FIGURE 28.11. Adaptive dynamics is a method for analyzing evolutionary models. This example
represents the evolution of an asexual population, which varies in some continuous trait x. At low
density, individuals have highest fitness if they are close to x = 0 (blue curve). Initially, the popu-
lation consists of poorly adapted individuals with trait value x = 2 (bottom right). New alleles are
introduced by mutation and differ slightly from the resident type. They can invade if they bring the
phenotype closer to the optimum at x = 0. The black dots show how each successive mutation
brings the phenotype closer to the optimum. Because mutations are assumed to be similar to the
resident population and to substitute one by one, adaptation is slow: This diagram shows the out-
come of more than 104 trial mutations.
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the resident allele. Thus, analysis is especially simple if, most of the time, the popula-
tion is fixed for a single genotype. In that case, the fate of each new mutation is ex-
amined to determine whether the mutation can invade to replace the previous allele.

Matters are more complicated if, when an allele invades, it sets up a stable poly-
morphism with the resident allele.Whether new alleles can invade this polymorphic state
can still be determined, because such invasion depends only on whether or not a new
allele has higher fitness than that of the residents. A substantial body of theory, known
as adaptive dynamics, is used to analyze situations like this by making the additional as-
sumption that invading alleles are similar to the resident (Fig. 28.11). This approach is
best thought of as a way of exploring the dynamics when a range of alleles is available
rather than as an actual model of evolution. (For one thing, when new alleles are simi-
lar in fitness to the residents, evolution will be very slow [Fig. 28.11].) In Chapter 20, we
looked at other ways of finding what kinds of phenotypes will evolve. In particular, evo-
lutionary game theory focuses on whether a resident phenotype is stable toward inva-
sion by alternatives. Here, the analysis avoids making assumptions about the genetics by
simply comparing the fitnesses of different phenotypes. All of these methods are guides
to the direction of evolution rather than ways of making exact predictions.
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FIGURE 28.12. If heterozygotes have a selective ad-
vantage s over either homozygote, a stable poly-
morphism is maintained. (A) The rate of change of
allele frequency is dp/dT = –spq(p – q). There are
unstable equilibria at p = 0, 1 (red dots) and a sta-
ble equilibrium at p = 0.5 (purple dot); arrows show
the direction of allele frequency change. (B) Allele
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(dashed line at p = 0.5). Time is scaled as T = st.
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Stability Is Determined by the Leading Eigenvalue

How do we find the stability of a polymorphic equilibrium in which two alleles coex-
ist? The simplest example is that of a single diploid gene, where the heterozygote is fit-
ter than either homozygote. If, for example, the fitnesses of QQ, PQ, PP are 1:1+s:1,
then the allele that is less common finds itself in heterozygotes more often and so tends
to increase. In Box 17.1, it was shown that

There are equilibria where an allele is fixed (p = 0, 1). To see whether the equilib-
rium at p = 0 is stable toward the introduction of an allele, assume that p is very small,
so that q is close to 1. Then, dp/dt ~ +sp, and a rare P allele will increase exponen-
tially at a rate s (i.e., p(t) = p(0)exp(st), for p << 1). Similarly, a rare Q allele will in-
crease as exp(st). There is also a polymorphic equilibrium where p = q = 1

2, so that p
– q = 0. To show that this is stable, suppose that allele frequency is perturbed slightly
to p = 1

2 + ε, where ε is very small. Then,

where we have ignored small terms such as ε2. Perturbations will decrease exponen-
tially at a rate –s/2, so that ε(t) = ε(0)exp(–st/2). The polymorphism is, therefore, sta-
ble. Equations such as this, in which the variables change at rates proportional to their
values, are termed linear. Because they do not include more complicated functions
(such as ε2 or exp(ε)), they behave much more simply than the nonlinear equations
that describe the full dynamics (here dp/dt = –spq(p – q)).

In this simple, one-variable example, it can be easily seen, without going through
the stability analysis, that a polymorphism must be stable (Fig. 28.12). With more vari-
ables, however, the outcome is not at all obvious, and a formal stability analysis be-
comes essential.

There are three key points (which also apply with slight modification in more com-
plex situations) to take from this first example.

• When near to an equilibrium, the equations almost always simplify to a linear form:
dε/dt = λε. The rate of change, λ, is known as the eigenvalue.



0 1

1

p1

p
2

FIGURE 28.13. A stable polymorphism (purple dot) can be maintained when selection favors al-
lele P in deme 2 but acts against it in deme 1. There are also two equilibria, corresponding to fix-
ation of allele Q or allele P in both demes (red dots). The diagram shows how populations con-
verge on the stable equilibrium (black lines). The green arrows show the leading eigenvectors at
the equilibria: Populations tend to move away from the unstable equilibria, and toward the stable
equilibrium, along these special directions. (M = m/s = 0.5.)
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• Therefore, perturbations increase or decrease exponentially, as exp(λt).

• Equilibria are unstable if λ > 0, so that perturbations grow, and are stable if λ < 0.

We now show how these points extend to an example involving two variables.

Stability Analysis Extends to Several Variables

Suppose that there are two subpopulations, which exchange a proportion m of their
genes per unit time. (Such subpopulations are referred to as demes; see p. 441.) An
allele is favored in one deme by selection of strength s but reduces fitness by the same
amount in the other deme. The entire system is described by two variables—namely,
the allele frequencies in the two demes, p1, p2. In Box 28.3, it is shown that there are
two equilibria at which one or the other allele is fixed throughout the whole popula-
tion, and one equilibrium at which both demes are polymorphic. At each equilibrium,
a pair of linear equations can be written that describes slight perturbations to the al-
lele frequencies ε1, ε2. Solutions are sought in which these perturbations grow or shrink
steadily but stay in the same ratio (e.g., ε1 = e1exp(λt) and Zε2 = e2exp(λt)). With two
variables, there are two solutions of this form, with two values of λ. Crucially, any per-
turbation can be written as a mixture of these two characteristic solutions. In the long
run, whichever solution grows fastest (or decays the slowest) will dominate. This is just
the solution with the largest value of λ, which is known as the leading eigenvalue.
This characteristic behavior can be seen in Figure 28.13.

The patterns seen in this example of migration and selection in two demes do not
quite exhaust the possibilities. Sometimes, no solution of the form ε1 = e1exp(λt) can
be found. In such cases, solutions have the form ε1 = e1exp(λt)sin(ωt + θ1), which
correspond to oscillations with frequency ω and grow or shrink at a rate λ. The larger
value of λ still dominates, because it grows faster, and so the stability of the equilib-
rium is still determined by whether the larger λ is positive or negative. Even when the
model as a whole involves complicated nonlinear interactions, near to its equilibrium
it behaves in an approximately linear way. Thus, the standard linear analysis of the be-
havior near to equilibria tells us a lot about the overall behavior.



Migration and Selection in Two DemesBox 28.3

Two subpopulations (or demes) exchange migrants at a rate
m per unit time. In deme 1, allele P is disadvantageous, with
selection coefficient –s, and in deme 2, allele P is favorable,
with selection +s (Fig. 28.14). The allele frequencies p1, p2
change at rates

These equations are an exact description of a haploid pop-
ulation reproducing continuously in time but are also a
good approximation to a variety of discrete time models of
diploids (see Box 16.1).

The problem can be simplified by dividing both sides by
s, and scaling time as T = st. Then, it is evident that the so-
lution depends only on the ratio between migration and se-
lection, M = m/s:

Clearly, there are equilibria where only one allele is present
(i.e., p1 = p2 = 0 or p1 = p2 = 1). There is also always a poly-
morphic equilibrium in which selection balances migration.
Specifically, selection tends to fix allele Q in deme 1 and P
in deme 2, whereas migration tends to make the allele fre-
quencies equal (Fig. 28.13). By symmetry, at this equilib-
rium, q2 = p1. (In other words, the equilibrium must lie on
the diagonal running from upper left to lower right in Fig.
28.13, indicated by a dotted line.) Setting the two equations
to 0 and solving reveals that the polymorphic equilibrium
occurs where p1q1 = M(p2 – p1) = M(q1 – p1). This can be
solved graphically (Fig. 28.15) or algebraically as

where p1* and p2* are the equilibrium allele frequencies.
Only the symmetric model, in which the selection coeffi-
cients in each deme are equal and opposite, is analyzed
here. If they are different, and if migration is fast enough rel-
ative to selection, then whichever allele is favored overall
will fix everywhere. However, if the selection coefficients
are precisely opposite as above, there will be a polymorphic
equilibrium even when migration is fast.

To find the stability of the three equilibria, first suppose
that p1 and p2 are small (lower left in Fig. 28.11). The equa-
tions then simplify to

We look for a solution that grows or shrinks steadily, so
that p1 = e1exp(λT), p2 = e2exp(λT). Because dp1/dT =
λe1exp(λT), and similarly for p2, the factors of exp(λlT) can-
cel throughout and

There are two possible solutions: λ = –M± . The
larger of these must be positive, because >M. So,
this equilibrium is unstable, because allele P can invade at
a rate λ = –M + > 0. (The green arrow at the bot-
tom left of Figure 28.13 shows this characteristic solution.)
The allele invades deme 2 faster than it invades deme 1, be-
cause it is favored there; thus, the arrow points upward. A
similar argument shows that the equilibrium with P fixed is
unstable to invasion by Q (upper right in Fig. 28.13).

The polymorphic equilibrium can be analyzed in a sim-
ilar way, by letting ε1 = p1 – p1* and ε2 = p2 – p2* be small
deviations from equilibrium. Discarding small terms such
as ε2 and ε3 gives

By searching for solutions of the forms p1 = e1exp(λlT) and
p2 = e2exp(λlT), again an equation for λ is obtained, which has
two solutions.The larger is λ= –s(q1* – p1*); because q1* > p1*,
the polymorphic equilibrium is stable. As they converge to-
ward this stable equilibrium at a rate λ, populations tend to fol-
low this solution (the leading eigenvector), as indicated by the
pair of green arrows in Figure 28.13 (upper left).

m

FIGURE 28.14. Allele Q (green) is favored in deme 1, and allele
P (purple) is favored in deme 2. Arrows indicate the direction of
selection. Genes are exchanged between the demes at a rate m.

dp1
dt = –sp1q1 + m(p2 – p1),  

dp2
dt = +sp2q2 – m(p2 – p1).  

dp1
dT = –p1q1 + M(p2 – p1),  

dp2
dT = +p2q2 – M(p2 – p1).  

p 1q
1

=
M

(q
1–

p 1)

0.2

p1

–0.2
1

FIGURE 28.15. The equation p1q1 = M(q1 – p1), which gives
the polymorphic equilibrium, can be solved by finding where
the graphs for the left and right sides cross. Here, M = 0.5,
and the equilibrium is at p1 = 0.293.

p1* = 1
2

+ M – 1
4

+ M2, p2* = 1 – p1* ,

dp1
dT = –(1 + M)p1 + Mp2,

dp2
dT = Mp1 + (1 – M)p2.

e1= –(1 + M)e1 + Me2,

e2 = Me1 + (1 – M)e2.

λ

λ

d 1
dT = (p1*– q1*– M) 1 + M 2,

d 2
dT = +M 1 + (q2*– p2*– M) 2.εε

εε ε

ε

1 + M2

1 + M2

1 + M2



RANDOM PROCESSES

Our Understanding of Random Events Is Relatively Recent

Most mathematics is long established. The fundamentals of geometry were worked out
at least three millennia ago by the Babylonians, for practical surveying. The Greeks de-
veloped both geometry and logic into a rigorous formal system by around 500 B.C.
Algebra, the representation of numbers by symbols, was established by Arab mathe-
maticians during the 9th and 10th centuries A.D., and calculus was discovered inde-
pendently by Gottfried Leibniz and Isaac Newton in the mid-17th century. Yet, the
most elementary notions of probability were established much more recently. Proba-
bility is a subtle concept; it can be interpreted in a variety of ways and is generally less
well understood than most of the mathematics in common use. Some key ideas in
basic probability are summarized in Box 28.4.

Probability did not become an integral part of physics until the 1890s, when Lud-
wig Boltzmann showed how gross thermodynamic properties such as temperature and
entropy could be explained in terms of the statistical behavior of large populations of
molecules. Even then, random fluctuations themselves were not analyzed until 1905,
when Albert Einstein showed that Brownian motion, which is the random movement
of small particles, is due to collisions with small numbers of molecules (Fig. 28.16).

Arguably, most developments in probability and statistics have been driven by bi-
ological— especially, genetic—problems. Francis Galton introduced the ideas of re-
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Basic ProbabililtyBox 28.4

Notation:
Prob(A), Prob(B) probability of events A, B.
fi probability that i = 0, 1, 2, ... .
f(x) probability density of a continuous variable x.

Probabilities sum to 1:

Probabilities of exclusive events sum:
Prob(A or B) = Prob(A) + Prob(B) if A and B cannot both occur.

Probabilities of independent events multiply:
Prob(A and B) = Prob(A)Prob(B) if the chance of A occurring is independent of

whether B occurs, and vice versa.

Expectation:

is the expected value of y; it is an average over the probability distribution f.

Mean and variance:
The mean of y is E[y], sometimes written

_
y.

The variance of y is E[(y –
_
y)2] or var(y).

The standard deviation of y is .

∑
i = 0

∞
fi = 1 or ⌡

⌠

∞

∞
f(x)dx = 1.

–

E[y] = ∑
i = 0

yi fi or ⌡⌠
–

y(x)f(x)dx
∞ ∞

∞

var(y)



gression and correlation in order to understand inheritance, and Karl Pearson devel-
oped these as a tool for analysis of quantitative variation and natural selection (p. 21).
The analysis of variance—key to separating and quantifying the causes of variation—
was first used by R.A. Fisher in 1918 to describe the genetic variation that affects quan-
titative traits (p. 393).

Even today, new concepts in probability theory, and new statistical methods, have
been stimulated by biological problems. These include Motoo Kimura’s use of the dif-
fusion approximation in his neutral theory of molecular evolution (pp. 59–60 and
425–427). More recently, coalescent models have provided us with a different way of
describing the same process of neutral diffusion (pp. 421–425), in terms of the ances-
try of genetic lineages. The fundamental importance of random processes in evolution
was explained in Chapter 15, and examples of inference from genetic data are given
in Chapter 19. Here, basic concepts of probability are reviewed, and some important
random processes are described.

A Random Process Is Described by Its Probability Distribution

A probability distribution lists the chance of every possible outcome. These may be
discrete (e.g., numbers of mutations), or there may be a continuous range of possi-
bilities (e.g., allele frequencies lying between 0 and 1). For a discrete probability dis-
tribution, the total must sum to 1. For a continuous distribution f(x), the chance of
any particular value is infinitesimal, but the area under the curve gives the probabil-
ity that the outcome will lie within some range (Fig. 28.17). Using the notation of in-
tegral calculus,

is the chance that x will lie between a and b.
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FIGURE 28.16. Brownian motion was discovered by Robert Brown in 1827 while he was ob-
serving pollen particles by microscopy. Albert Einstein in a famous 1905 paper (and three subse-
quent papers) presented the laws governing Brownian motion as a way to confirm the existence
of atoms.

⌡⌠
a

b

f (x)dx
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FIGURE 28.17. (A) An example of a discrete probability distribution fi on the range i = 0, ..., 20.
(B) This can also be represented as a cumulative distribution Fi, which is the probability of draw-
ing a value less than or equal to i. (C) The area under a probability density f(x) gives the proba-
bility that a continuous variable x lies within some range of values. For example, the blue shaded
area gives the chance that x < 2.2 as

(D) The cumulative distribution F(x) gives the probability that the value is smaller than x; the point
at x = 2.2, F(x) = 0.47 corresponds to the shaded area in C.

⌡⌠
2.2

f(x)dx = 0.47.
–∞

The distribution of a continuous variable is sometimes called a probability den-
sity. Again, the total area must sum to 1; that is,

(Fig. 28.17).
The overall location of a distribution can be described by its mean. This is simply

the average value of the random variable x, which is sometimes written as
_
x and some-

times as the expectation, E[x] (see Box 28.4). The spread of the distribution is de-
scribed by the variance, which is the average of squared deviations from the mean
(var(x) = E[(x –

_
x)2]). The variance has units of the square of the variable (e.g., me-

ters2 if x is a length). Thus, the spread around the mean is often expressed in terms
of the standard deviation, equal to the square root of the variance, and with the same
units as the variable itself.

Discrete Distributions

Box 28.5 summarizes the properties of the most important distributions. The simplest
cases have only two possible outcomes, such as a coin toss giving heads or tails or one
of two alleles being passed on at meiosis. This distribution has often been used when

∫
∞

∞−

dxxf )( = 1



Common Probability DistributionsBox 28.5

Table 28.1 defines commonly used probability distributions. The parameters used in the
plots on the right-hand column of the table are two-valued, p = 0.7; binomial, n = 10, p
= 0.3; Poisson, λ= 4; exponential, λ= 1; normal,

_
x = 0, σ2 = 1; chi-square, n = 10; and

Gamma: β = 2, α = 0.5 (red), α = 2 (blue). The factorial 1 x 2 x 3 x ... x n is written as n!.
Γ(x) is the gamma function; Γ(n + 1) = n!. Note that the chi-square distribution is a spe-
cial case of the Gamma distribution.

npq
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looking at the chance of either of two alleles being sampled from a population, with
probability q or p. If the two outcomes score as 0 or 1, then the mean score is p, and
the variance in score is pq.

A natural extension of this two-valued distribution is the binomial distribution.
This gives the distribution of the number of copies of one type out of a total of n
sampled items. It is the distribution of the sum of a series of independent draws from
the two-valued distribution, each with probabilities q, p. (This is the basis of the
Wright–Fisher model; see p. 416.) It must be assumed that either the population is
very large or each sampled gene is put back before the next draw (“sampling with re-
placement”). Otherwise, successive draws would not be independent (sampling a P
would make sampling more Ps less likely). The mean and variance of a sum of inde-
pendent events are just the sums of the means and variances of the component means
and variances. Therefore, a binomial distribution has mean and variance n times those
of the two-valued distribution just discussed, np and npq, respectively. The typical de-
viation from the mean (measured by the standard deviation) is , which increases
more slowly than n. Therefore, the binomial distribution clusters more closely around
the mean as the numbers sampled (n) increase. The binomial distribution approaches
a normal distribution with mean np and variance npq as n gets large.

The Poisson distribution gives the number of events when there are a very large
number of opportunities for events, but each is individually rare. The classic example
is the number of Prussian officers killed each year by horse kicks, described by Ladis-
laus Bortkiewicz in his 1898 book The Law of Small Numbers. Over the course of 20
years, Bortkiewicz collected data on deaths from horse kicks occurring in 14 army
corps, over the course of 20 years, and found that the overall distribution of the deaths
followed a Poisson distribution. Another example of the Poisson distribution is the
number of radioactive decays per unit time from a mass containing very many atoms,
each with a very small chance of decaying. For example, a microgram of radium 226
contains 2.6 x 1015 atoms and is expected to produce 37,000 decays every second; the
actual number follows a Poisson distribution with this expectation. Similarly, the num-
ber of mutations per genome per generation follows a Poisson distribution, because it
is the aggregate of mutations that may occur at a very large number of bases, each
with a very low probability (p. 531). The Poisson distribution is the limit of a bino-
mial distribution when n is very large and p is very small. It has mean np = λ, and the
variance is equal to this mean (because npq ~ np = λ when p is small). Like the bi-
nomial, it converges to a Gaussian distribution when λ is large. We very often need to
know the chance that no events will occur. Under a binomial distribution, this is (1 –
p)n. As n becomes large, this tends to exp(–np) = exp(–λ), which is the probability of
no events occurring under a Poisson distribution. For example, the chance that there
are no mutations in a genome when the expected number of mutations is λ = 5 is
exp(–5) ~ 0.0067.



TABLE 28.1. Common probability distributions

Distribution Mean Variance

Discrete

Two-valued f0 = q, f1 = p p pq

Binomial np npq

Poisson λ λ

Continuous

Exponential λe–λx 1 1
λ λ2

Gaussian

(or normal) x σ2

Chi-square n 2n

Gamma αβ αβ2

0.5

0 1

n!
_________

i!(n – i)! q
n – ipi 0.2

0 10

0.1

0 10

1

0 5

0.2

–2 0 2

0.1

0 10 20

0.5

0 5

λie–λ
i!

1 (x – x)2_________ exp(– _________)2πσ2 2σ2��

1        x (n/2) – 1
________ (__) e–x/2
2Γ(n/2)   2

1        x α – 1
_______ (__) e–x/β
βΓ(α)    β
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FIGURE 28.18. Exponentially distributed variables have a wide range. In this sample of 100, val-
ues range between 0.008 and 6.2, even though the expectation is 1. 
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Continuous Distributions

We turn now to distributions of continuous variables. The time between independent
events, such as radioactive decays or the time between mutations in a genetic lineage,
follows an exponential distribution (Fig. 28.18). This distribution has the special
property that the expected time to the next event is the same, regardless of when the
previous event occurred. (This follows from the assumption that events occur inde-
pendently of each other.) The exponential distribution has a very wide range; specifi-
cally, 1% of the time, events occur closer together than 1% of the average interval, and
1% of the time, they take more than 4.6 times the average. This distribution is closely
related to a Poisson distribution. If the rate of independent events is ∝, the number
within a total time t is Poisson distributed with mean ∝t. 

In contrast, a normal or Gaussian distribution is tightly clustered around the
mean. (There is a less than 4.6% chance of deviating by more than 2 S.D., less than
0.27% of deviating by more than 3 S.D., less than 6.4 x 10–5 of deviating by more than
4 S.D., and so on.) We saw in Figure 14.2 that many biological traits follow a normal
distribution. Later in this chapter, we will see why this distribution appears so often. A
closely related distribution is the chi-square distribution, which is the distribution of
the sum of a number n of squared Gaussian variables, z21 + z

2
2 + ... + z

2
n and is written

as χ2n. This determines the distribution of the variance of a sample of n values.
There are many other continuous distributions. One that appears quite often is the

Gamma distribution, which has two parameters (α, β). It is useful in modeling be-
cause it gives a way of varying the distribution from a tight cluster (α large) to a broad
spread (α small). The time taken for k independent events to occur, each with rate µ,
is gamma distributed, with parameters α = k, β = 1/∝.

Only distributions of a single variable (either discrete or continuous) have been dis-
cussed. But distributions of multiple variables will also be encountered, which may be
correlated with each other, for example, the distribution of age and body weight. The
most important distribution here is the multivariate Gaussian, which has the useful
property that the distribution of each variable considered separately, and of any linear
combination of variables (e.g., 2z1+3z2, say), is also Gaussian (Box 28.5). This distribu-
tion is especially important for describing variation in quantitative traits (pp. 386–387).

Probability Can Be Thought of in Several Ways

We have explained how probabilities can be described and manipulated. But what ex-
actly is a “probability”? The simplest case is when outcomes are equally probable. For
example, the chance that a fair coin will land heads up or tails up is always 1/2, and the
chance that a fair die will land on any of its six faces is 1/6. Probability calculations
often rest on this simple appeal to symmetry. For example, a fair meiosis is similar to
a fair coin toss, with each gene having the same chance of being passed on; and if the
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total mutation rate is 1 per genome per generation, then the probability of mutation is
1/(3 x 109) per generation at each of 3 x 109 bases. However, matters are rarely so sim-
ple: Meiotic transmission can be distorted (pp. 587–589), and mutation rates vary along
the genome (p. 347). Often, we would like to talk about the probability of events that
are not part of any set of symmetric possibilities. What is the chance that the average
July temperature will be hotter than 20°C? What are the chances that some particular
species will go extinct? What is the chance that some particular disease allele will spread?

One possibility is to define probability as the frequency of an event in a long series
of trials or among a set of replicates carried out under identical conditions. This is clear
enough if we think of a coin toss or meiotic segregation, because we could imagine re-
peating the random event any number of times, under identical conditions. However,
this is rarely possible in practice (or even in principle). To find the distribution of July
temperatures, we could record temperatures over a long series of summers, although
there might be good reason to think that the conditions under which the readings were
taken are not equivalent, because, for example, the Earth’s orbit, Sun’s brightness, and
atmospheric composition fluctuate systematically. The goal is to use this information
to find the probability distribution of temperature in one particular summer. Similarly,
to answer the other two questions, it is necessary to know the probability of survival of
some particular species or allele, which may not be equivalent to any others. 

Another problem with using the long-run frequency to define probability is that,
given some particular sequence of events, a way to judge the plausibility of the hy-
pothesis is needed. For example, if the sequence is 480 heads and 520 tails, we still
need to be certain that the coin is fair (i.e., that the probability of heads = 1/2). There
are other possibilities: for example, the probability of heads might be 0.48, or the fre-
quency of heads might increase over the course of the sequence. In real-life situations,
we are frequently faced with distinguishing alternative hypotheses on the basis of only
one set of data. Invoking hypothetical replicates does not avoid the difficulty, because
judgments must still be made on the basis of a finite (albeit larger) dataset. 

An apparently quite different view is that probability expresses our degree of be-
lief. This allows us to talk about probabilities not only of events but also of hypothe-
ses. For example, what is the probability that there is life on Mars, or that introns
evolved from transposable elements? It is hardly practical to define probability as a
psychological measure of actual degree of belief, because that would vary from person
to person and from time to time. Instead, probability is seen as the “rational degree of
belief” and can be defined as the odds that a rational person would use to place a bet,
so as to maximize his or her expected winnings. But put this way, it is either equiva-
lent to the definition based on long-run frequency just discussed (because the expected
winnings depend on the long-run frequency) or it is still subjective (because it de-
pends on the information available to each person). These different interpretations of
probability influence the way statistical inferences are made.

We (i.e., the authors) favor the view that probability is an objective property, which
can be associated with unique events. We calculate probabilities from models. For exam-
ple, a model of population growth that includes random reproduction gives us a prob-
ability of extinction. A model of the oceans and atmosphere gives us the probability dis-
tribution of temperature or rainfall in the future. With this view, what is crucial is how
hypotheses are distinguished from one another—that is, distinguishing between different
models that predict our observations with different probabilities. This issue is explored
in more depth in the Web Notes (online). We take the view that the simplest approach
is to prefer hypotheses that predict the actual observations with the highest probability.

Probabilities Can Be Assigned to Unique Events

To give a concrete example of the types of probability arguments that arise in prac-
tice, we take as an example predictions of the effects of climate change on specific
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events. The summer of 2003 was exceptionally hot across the Northern Hemisphere
and especially so in Western Europe (Fig. 28.19A). As a result, an additional
22,000–35,000 people died during August 2003, a figure estimated from a sharp peak
in mortality rates (Fig. 28.19B); around Paris, there was a major crisis as mortuaries
overflowed. In addition, considerable economic damage resulted from crop failures and
water shortages. Now, climate is highly variable, and we cannot attribute this particu-
lar event to the general increase in global temperatures over the past century, and nor
can we say with certainty that it was caused by the greenhouse gases produced by
human activities that are largely responsible for that trend. However, we can make
fairly precise statements about the probability that such high temperatures would
occur under various scenarios. 

Models of ocean and atmosphere can be validated against past climate records, so
that a narrow range of models is consistent with physical principles and with actual
climate. These models predict a distribution of summer temperatures. The summer of
2003 was unlikely, but not exceptionally so. Given current rates of global warming,
such hot summers will become common by about 2050. As the distribution shifts to-
ward higher average temperatures, and its variability increases, the chances of extreme
events greatly increase (Fig. 28.19C,D). The climate models can be run without in-
cluding the influence of greenhouse gases and show that the probability of extremely
high temperatures would then be much lower. Overall, about half the risk of a sum-
mer as extreme as that of 2003 can be attributed to human pollution. It is calculations
such as these—estimating the probability of unique events—that lay the legal basis for
the responsibility of individual polluters. The point here is that we can and do deal
with the probabilities of single, unique events.

The Increase of Independently Reproducing Individuals Is a
Branching Process

This chapter is concerned with models of reproducing populations. The simplest such
model is one in which individuals reproduce independently of each other. In other
words, each individual produces 0, 1, 2, ... offspring, with a distribution that is inde-
pendent of how many others there are and how they reproduce. Mathematically, this
is known as a branching process, and it applies to the propagation of genes, surnames,
epidemics, and species, as long as the individuals involved are rare enough that they
do not influence each other. This problem was discussed by Galton, who wished to
know the probability that a surname would die out by chance. However, the basic
mathematics applies to a wide range of problems.

It is simplest to assume that individuals reproduce only once, and in synchrony, so
that time can be counted in discrete generations. Each individual leaves 0, 1, 2, ... off-
spring with probability f0, f1, f2, ... . Clearly, f0 + f1 + f2 + ... = 1, and the mean off-
spring number (i.e., the mean fitness) is

On average, the population is expected to grow by a factor 
_
k every generation, and by_

kt over t generations. Indeed, the size of a very large population would follow the
smooth and deterministic pattern of geometric increase as modeled above (see Re-
producing Populations Tend to Grow Exponentially section of this chapter). However,
this average behavior is highly misleading when numbers are small. The number of
offspring of any one individual has a very wide distribution, with a high chance of
complete extinction (Fig. 28.20). 
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FIGURE 28.19. (A) Land surface temperatures for summer 2003, relative to summers 2000–2004.
(B) Daily mortality rate in the German state of Baden-Wurttemberg; the red line shows the sea-
sonal cycle, with higher mortality in winter. The graph shows the extra mortality due to an in-
fluenza outbreak in February–March 2003 and the sharp peak due to the heat wave of August
2003. That heat wave caused an additional 900–1300 deaths, out of 10.7 million people. (C) Dis-
tribution of summer temperatures in northern Switzerland, under a climate model representing con-
ditions in 1961–1990. The exceptionally hot summer of 2003 is shown by a red bar. (D) The same,
but for predicted conditions in 2071–2100, assuming current rates of increase in greenhouse gases.
(A, Redrawn from Allen M.R. and Lord R. 2004. The blame game. Nature 432: 551–552. B, Re-
drawn from Box 1 figure in Schar C. and Jendritsky G. 2004. Hot news from summer 2003. Na-
ture 432: 559-560. C, Modified from Fig. 3a,b in Schar C. et al. 2004. The role of increasing tem-
perature variability in European summer heatwaves. Nature 427: 332–336.)
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portional to probability. (The diagram is cut off at the right, at 60 descendants.) (B) The distribu-
tion of the number of descendants after ten generations.

Q0 = 0,

Q1  = f0,

Q2 = f0 + f1Q1  + f2Q2
1

+ f3Q3
1

,

.

.

Qt = ∑
k = 0

∞
 f k Q k

t –1
.

.

Q3 = f0 + f1Q1  + f2Q2
2

+ f3Q3
3

,

24 Part  VI • ONLINE CHAPTERS

What is the probability that after t generations, one individual will leave no de-
scendants (Qt) or some descendants (Pt; necessarily Qt + Pt = 1)? Initially, this is Q0

= 0, because one individual must be present at the start (t = 0). The chance of loss
after one generation is the chance that there are no offspring in the first generation,
that is, Q1 = f0. To find the solution for later times, sum over all possibilities in the
first generation. There is a chance f0 of no offspring, in which case loss by time t is
certain. There is also a chance f1 of one offspring, in which case loss by time t is the
same as the chance that this one offspring leaves no offspring after t – 1 generations.
More generally, if there are k offspring, the chance that all k will leave no offspring
after the remaining t – 1 generations is just Q t – 1

k . Thus, a recursion allows us to cal-
culate the chance of loss after any number of generations: 
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FIGURE 28.21. The probability that a gene will leave no descendants, Q, increases toward 1 if its
average fitness is not greater than 1 (k

_
= 0.8, 1). If the fitness is greater than 1, then the probabil-

ity of loss converges to a value less than 1. For fitness k
_
= 1.2, Q tends to 0.68, so that there is a

32% chance that the gene leaves some descendants. 
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This solution is shown in Figure 28.21, assuming a Poisson distribution of offspring
number. If the mean fitness is less than or equal to 1 (

_
k ≤ 1), extinction is certain. How-

ever, if the mean fitness is greater than 1, there is some chance that the lineage will es-
tablish itself, to survive and grow indefinitely. To find the chance of ultimate survival, find
when Qt converges to a constant value, so that Qt = Qt – 1 = Q. This gives an equation for
Q that can be solved either using a computer or graphically (Fig. 28.22). With binary fis-
sion, for example, an individual either dies or leaves two offspring (i.e., f0 + f2 = 1). Thus,

where the solution is only valid (Q < 1) if f0 < f2, which must be true if the popula-
tion is to grow at all. If the distribution of offspring number is Poisson, with mean 
λ > 1, then

where the fact that

is used. The solution to this equation is shown graphically in Figure 28.22. For a
growth rate of λ = 1.2, the probability of ultimate loss is Q ~ 0.686.

Usually, our concern is with the fate of alleles that have a slight selective advan-
tage (

_
k = 1 + s, where s << 1). There is a simple approximation that does not depend

on the (usually unknown) shape of the distribution of offspring number, fk: 

This remarkably simple result shows that when an allele has a small selective advan-
tage s, its chance of surviving is twice that advantage divided by the variance in num-
bers of offspring, var(k). (With a Poisson number of offspring, var(k), the variance of
offspring number is equal to its mean, which is 

_
k = 1 for a stable population; thus, P

= 2s.) The consequences of this relation are considered on pages 489–490. 

Q = f0 + f2Q2 so that Q = 
f0
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FIGURE 28.22. (A) The probability of ultimate extinction can be found graphically. The diagonal
line plots Q, and the curve plots Exp[–λ(1 – Q)] for λ = 1.2. The solution to Q = Exp[–λ(1 – Q)]
is the point where the curves cross, at Q = 0.686. (B) In ten replicates of the process, six went ex-
tinct within four generations. The remaining four are plotted here; three survived indefinitely. (Num-
bers are plotted on a log scale, so that exponential growth appears as a straight line.) 
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The Sum of Many Independent Events Follows
a Normal Distribution

The phenotype of an organism is the result of contributions from many genes and many
environmental influences; the location of an animal is the consequence of the many sep-
arate movements that it makes through its life; and the frequency of an allele in a popu-
lation is the result of many generations of evolution, each contributing a more or less ran-
dom change. To understand each of these examples quantitatively, the combined effects
of many separate contributions must be considered. Often, the overall value can be treated
as the sum of many independent effects. If no effect is too broadly distributed, then the
sum follows an approximately Gaussian distribution. This is known as the Central Limit
Theorem and is illustrated in Figure 28.23 by an ingenious device designed by Galton. 

Figure 28.24 illustrates this convergence to a Gaussian distribution and shows the
distribution of each individual random effect. Although the distributions are initially
quite different, and far from Gaussian, the distribution of their sum becomes smoother
and converges rapidly to a Gaussian distribution. Necessarily, the distribution of the
sum of two or more Gaussians is itself a Gaussian. 

The mean of the overall distribution is the sum of the separate means, and the
variance of the overall distribution is the sum of the separate variances. Because the
shape of a Gaussian distribution is determined solely by its mean and variance, all



B

FIGURE 28.23. (A) Galton’s “pinball” machine, also called Galton’s quincunx, was devised to il-
lustrate the convergence to a normal distribution. Written on the face of the device by Galton is
“Instrument to illustrate the Law of Error on Dispersion by Francis Galton FRS.” (B) Rendering of
Galton’s quincunx based on an illustration in his book Natural Inheritance. (A, Courtesy of the Gal-
ton Collection, University College London. Photo GALT063. http://www/ucl.ac.uk/silva/museums/
galton/collections/highlights/statistics/GALT063. B, Modified from Fig. 7, p. 63 in Galton F. 1889.
Natural Inheritance, MacMillan, New York and London.)
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FIGURE 28.24. The distribution of the sum of several independent random variables converges to
a normal (i.e., Gaussian) distribution. (Top left panel) Exponential distribution (blue) together with
a Gaussian distribution with the same mean and variance (red). (Left column) The blue curves show
the distribution of the sum of 2, 3, ..., 10 exponentially distributed variables. (Right column) The
same, but for a two-valued discrete distribution. In both cases, the distribution of ten independent
variables fits well to a Gaussian curve.
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other features of the component distributions are irrelevant. This is an important sim-
plification, because it means that the process can be described in terms of just two
variables—namely, the mean and variance of the component distributions. This is used
elsewhere in the book to simplify our description of quantitative variation (p. 385)
and that of the flow of genes through populations (Fig. 16.3).

Random Walks Can Be Approximated by Diffusion

The sum of a large number of independent random variables tends to a Gaussian dis-
tribution. We can think of this convergence as occurring over time. For example, con-
sider an individual moving in a random walk so that its position changes by a random
amount every generation. At any time, it will be at a random position drawn from a
distribution that converges to a Gaussian. (To be more concrete, think instead of a pop-
ulation of randomly moving individuals and follow the distribution of all of them.) In
this section, we show how the probability distribution changes approximately continu-
ously in time, and can be described by a diffusion equation. This parallels our discus-
sion of deterministic models (see the Deterministic Processes section in this chapter),
where it was shown that a variety of different models of evolution can be approximated
by a differential equation in continuous time. Similarly, a range of random models can
all be approximated by a diffusion of the probability distribution. This gives a power-
ful method for understanding the interaction between different evolutionary processes.

Consider a variable x, which has distribution ψ(x, t) at time t. If the changes in
each time step are small and have constant mean M and variance V, then the distri-
bution spreads out according to a differential equation that gives the rate of change of
the distribution, dψ/dt (Box 28.6). If the population starts out concentrated at a sin-
gle point (or the position of a single individual that starts at that point is considered)
then the solution is a Gaussian distribution with mean Mt and variance Vt (Fig. 28.25,
left column). Other initial distributions lead to different solutions. A sharp step decays
in a sigmoidal curve (Fig. 28.25, middle column), whereas sinusoidal oscillations decay

–2 0 2 –2 0 2 –2 0 2

t = 0.25

t = 0.5

t = 1

t = 2

–2 0 2–2 0 2 –2 0 2

–2 0 2–2 0 2 –2 0 2

–2 0 2–2 0 2 –2 0 2

FIGURE 28.25. Solutions to the basic diffusion equation, dψ/dt = σ2d2ψ/dx2. (Left column) If the
population starts concentrated at a point, it spreads out in a Gaussian distribution with variance σ2t.
(Middle column) If the population starts out living only on the left side (x > 0), the step smooths
out over time. (Right column) Fluctuations in density (~sin(ωt)) decay in amplitude, as exp(–σ2ω2t/2).
The rate of diffusion is set to σ2 = 1. 



The Diffusion ApproximationBox 28.6

Suppose that at time t, a variable x has distribution ψt(x); x might represent the position of a
randomly moving individual or the allele frequency in a randomly evolving population. In
the next generation, a small random quantity y is added, giving a new and broader distribu-
tion, ψt + 1(x). The probability of finding x at time t + 1 is the chance that the value was x – y
at time t, and that the additional perturbation was y. Averaging over the distribution of per-
turbations, f(y):

Now, assume that the distribution ψt is smooth, and much broader than the distribution
of perturbations, f(y). Then, ψt(x – y) can be approximated as

(This is known as a Taylor’s series approximation [Fig. 28.26].) It can be shown that as long as
f(y) is not too broad, only the terms shown here are needed, involving the gradient (dψt/dx) and
curvature (d2ψt/dx

2), just as, when the Central Limit Theorem holds, only the mean and vari-
ance are needed to describe the distribution. Substituting into the integral above, 

Finally assume that changes from one generation to the next are small, so that ψt + 1 – ψ t can
be approximated by the continuous rate of change dψ/dt. If the mean perturbation is written as

∫ y f(y) dy = M, 

and the mean square perturbation (which is approximately equal to the variance for small
M) as

∫ y2 f(y) dy = V, 

then

If the distribution is initially concentrated as a sharp spike at x = 0, then the solution to
this diffusion equation is a Gaussian with mean Mt and variance Vt (Fig. 28.25, left column).

In this derivation, it is assumed that the distribution f(y) and hence M and V are constant.
In general, they will depend on x and can be written as M(x), V(x). Then, the formula given
in the main text applies.

FIGURE 28.26. The diffusion approximation is de-
rived using a Taylor’s series (Box 28.6). The red curve
shows the distribution of fluctuations, f(y), and the
blue curve shows the probability distribution ψ(x). If
the distribution of fluctuations is narrow, then the dis-
tribution can be approximated by a quadratic curve

shown by the dotted line.
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Selection and Migration in a Small PopulationBox 28.7

The diffusion equation is a powerful tool for finding how dif-
ferent evolutionary processes combine. For example, imag-
ine that an allele P is favored by selection s in a small popu-
lation of N diploid individuals. However, polymorphism is
maintained by immigration at rate m from a larger popula-
tion with allele frequencies q* and p*. In this model, the
mean change of allele frequency per generation is M(p) = spq
+ m(p*– p) and the variance of fluctuations in allele fre-
quency caused by random drift is V(p) = pq/2N (Box 15.1).
Substituting these into the diffusion equation in the main text,
the rate of change of the distribution of allele frequency is

The probability distribution will reach an equilibrium where
dψ/dt = 0. (If there are many subpopulations, then this will
be the distribution of allele frequency across the entire set.)
This equilibrium can be found by setting

This can be rearranged to give a formula in terms of
pqψ:

which can be integrated to give a solution

ψ = C p4Nmp*–1q4Nmq*–1 exp(4Nsp), 

where the constant C is chosen so that the probability sums
to 1. (This solution can be verified by substituting it back
into the diffusion equation.)

The most important feature of this distribution is that it
depends only on the scaled parameters Nm and Ns, which
give the strength of migration and selection relative to drift.
When Ns is large, selection can maintain the favored allele
P at high frequency, so that the distribution is peaked at the
right. When Nm is small, the population tends to be fixed
for one or the other allele (Fig. 28.27A), whereas when it is
large, the distribution is pulled toward the frequency in the
migrant pool (p ~ p*) (Fig. 28.27B). 
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FIGURE 28.27. The distribution of allele frequencies under
migration, selection, and drift; p* = 0.05. (A) Nm = 0.25, Ns
= 1. (B) Nm = 2, Ns = 4. 
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at a steady rate, proportional to the square of their spatial frequency (Fig. 28.25, right
column). The effect of diffusion is to smooth out distributions over time. 

When the mean and variance (M, V) of each small fluctuation are fixed, the dis-
tribution follows a Gaussian (Box 28.6). Thus, the simple case is really a different way
of presenting the Central Limit in terms of differential equations. In general, however,
the mean and variance of changes in each generation will depend on the state of the
system, in which case the distribution will almost always not be Gaussian. For exam-
ple, changes in allele frequency must decline to 0 as allele frequencies tend to 0 or 1,
because they must remain within these bounds. The successive changes are then no
longer independent of each other, and the Central Limit Theorem no longer applies.
However, the change in the distribution can still be described by a diffusion equation,
which is a straightforward extension of that derived in Box 28.6:
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SUMMARY

Mathematical theory is widely used in evolutionary biol-
ogy, both to understand how populations evolve forward
in time and to make inferences from samples of genes
traced back through time. Models of deterministic
processes, such as selection, mutation, recombination, and
migration, follow the proportions of different genotypes
through time. In sexually reproducing populations, this is
difficult with more than a few genes, because of the huge
number of possible gene combinations. Reproducing pop-
ulations tend to grow exponentially; a variety of models,
evolving either in discrete generations or continuously,
can be approximated by a simple differential equation.
Differential equations involving a single allele frequency
can be solved, but scaling arguments can be used in more
complex cases to show that the outcome depends only on
parameter combinations such as the ratio of migration to
selection, m/s. Models can be understood by identifying

their equilibria and by finding whether these equilibria are
stable. Near to equilibria, the model can be approximated
by simple linear equations, and its behavior depends on
the magnitude of the leading eigenvalue. 

The concept of probability is crucial both for follow-
ing the proportions of different genotypes in determinis-
tic models and for understanding the random evolution-
ary process of genetic drift. The probability distribution
describes the chance of any possible outcome and may be
defined for discrete possibilities (e.g., the numbers of in-
dividuals) or for continuous variables (spatial location or
allele frequency in a large population, say). We describe
two important models for how probability distributions
change through time: branching processes, which apply
to populations of genes or individuals that reproduce in-
dependently of each other, and the diffusion approxima-
tion, which applies when random fluctuations are small. 
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This differential equation is extremely important in population genetics, because it
gives a simple way to analyze the effects of different evolutionary processes on the dis-
tribution of allele frequencies (e.g., see Box 28.7) The neutral theory of molecular
evolution (p. 59) was largely based on this method for analyzing the effects of random
fluctuations; additional examples are on pages 495–496 and 641.




