

FIGURE 18.7. Under a balance between random drift and selection, populations will be scattered across the adaptive landscape in a distribution proportional to \overline{W}^{2N_e} . The contours show the mean fitness of a population plotted against the means of two quantitative traits. The traits are under **disruptive selection**, so that there are two adaptive peaks; genetic variance is assumed to be constant. *S* marks the saddle between the two peaks. Contours are plotted at $\overline{W}=0.91,\ 0.92,\ \dots,\ 0.99,\ 1.$ (*A*) Populations of $N_e=25$ are subject to strong random drift and so are scattered widely across the adaptive landscape. (*B*) In larger populations, with $N_e=100$, selection is stronger than drift, and populations are clustered around the adaptive peaks. (*C*) A simulation of the time course of change in the first trait (*x*-axis in *A*,*B*) for $N_e=100$. Dashed lines show the positions of the two adaptive peaks.