TABLE 27.11. Neighbor-joining example
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

Distance matrix

	A	B	C	D	E
B	5				
C	4	7			
D	7	10	7		
E	6	9	6	5	
F	8	11	8	9	8

	U_{1}	C	D	E
C	3			
D	6	7		
E	5	6	5	
F	7	8	9	8

	U_{1}	C	U_{2}
C	3		
U_{2}	3	4	
F	7	8	6

	U_{2}	U_{3}
U_{3}	2	
F	6	6

$\begin{array}{cc} & U_{4} \\ & 5\end{array}$
$\begin{array}{llll}6 & 9 & 6 & 5\end{array}$

Step 1
$S_{x}=\left(\right.$ sum all $\left.D_{\chi}\right) /(N-2)$, OTUs in the set.

Step 2

Calculate pair with smallest (\mathcal{M}), where $M_{i j}=D_{i j}-S_{i}-S_{j}$.
$S_{\mathrm{A}}=(5+4+7+6+8) / 4=7.5$
$S_{B}=(5+7+10+9+11) / 4=10.5$
$S_{\mathrm{C}}=(4+7+7+6+8) / 4=8$
$S_{\mathrm{D}}=(7+10+7+5+9) / 4=9.5$
$S_{\mathrm{E}}=(6+9+6+5+8) / 4=8.5$
$S_{\mathrm{F}}=(8+11+8+9+8) / 4=11$

Smallest are
$M_{\mathrm{AB}}=5-7.5-10.5=-13$
$M_{\mathrm{DE}}=5-9.5-8.5=-13$
Choose one of these (AB here)
$S_{U_{1}}=(3+6+5+7) / 3=7$
$S_{\mathrm{C}}=(3+7+6=8) / 3=8$
$S_{\mathrm{D}}=(6+7+5+9) / 3=9$
$S_{\mathrm{E}}=(5+6+5+8) / 3=8$
$S_{\mathrm{F}}=(7+8+9+8) / 3=10.6$

> Smallest is
> $M_{\mathrm{CU}}=3-7-8=-12$
> $M_{\mathrm{DE}}=5-9-8=-12$

Choose one of these (DE here)

$$
\begin{array}{ll}
S_{\mathrm{U}_{1}}=(3+3+7) / 2=6.5 & S_{\mathrm{U}_{2}}=(2+6) / 1=8 \\
S_{\mathrm{C}}=(3+4+8) / 2=7.5 & S_{\mathrm{U}_{3}}=(2+6) / 1=8 \\
S_{\mathrm{U}_{2}}=(3+4+6) / 2=6.5 & S_{\mathrm{F}}=(6+6) / 1=12
\end{array}
$$

$S_{\mathrm{F}}=(7+8+6) / 2=10.5$

Smallest is

$$
M_{\mathrm{CU}_{1}}=3-6.5-7.5=-11
$$

Because $N-2=0$, we cannot do this calculation.

Step 3

Create a node (U) that joins pair with lowest $M_{i j}$ such that
$S_{I U}=D_{i j} / 2+\left(S_{i}-S_{j}\right) / 2$
U_{1} joins A and B :
$S_{\mathrm{AU}_{1}}=D_{\mathrm{AB}} / 2+\left(S_{\mathrm{A}}-S_{\mathrm{B}}\right) / 2=1$ $S_{\mathrm{BU}_{1}}=D_{\mathrm{AB}} / 2+\left(S_{\mathrm{B}}-S_{\mathrm{A}}\right) / 2=4$
U_{2} joins D and E :
2 Joins $\quad U_{3}$ joins C and U_{1} :
U_{3} joins C and U_{1} : $\quad U_{4}$ joins U_{2} and U_{3} :
$S_{\mathrm{U}_{2} \mathrm{U}_{4}}=D_{\mathrm{U}_{2} \mathrm{U}_{3}} / 2+\left(S_{\mathrm{U}_{2}}-S_{\mathrm{U}_{3}}\right) / 2=$
For last pair, connect $S_{\mathrm{EU}_{2}}=D_{\mathrm{DE}} / 2+\left(S_{\mathrm{E}}-S_{\mathrm{D}}\right) / 2=2 \quad S_{\mathrm{U}_{1} \mathrm{U}_{3}}=D_{\mathrm{CU}_{1}} / 2+\left(S_{\mathrm{U} 1}-\mathrm{S}_{\mathrm{C}}\right) / 2=1 \quad S_{\mathrm{U}_{3} \mathrm{U}_{4}}=D_{\mathrm{U}_{2} \mathrm{U}_{3}} / 2+\left(S_{\mathrm{U} 3}-S_{\mathrm{U} 2}\right) / 2=1 . \quad$ length $=5$.

Step 4

Join i and j according to S above and make all other taxa in form of a star. Branches in black are of unknown length. Branches in red are of known length.

Step 5

Calculate new distance matrix of all other taxa to U with
$D_{X U}=D_{i x}+D_{j x}-D_{i j}$, where i and j are those selected from above.

Comments

Note this is the same tree we started with (drawn in unrooted form here).

From http://www.icp.ucl.ac.be/~opperd/private/upgma.html.

